FTN SERIES
FLOAT & THERMOSTATIC
STEAM TRAPS

Pressures To 125 PSIG (8.6 barg)
Temperatures to 450°F (232°C)

Universal Four-port Design — Four possible hookup combinations of the “H” pattern body and piping dimensions similar to other major manufacturers allow maximum installation flexibility for easy replacement of other traps. Inlet and outlet taps on larger sized traps located in the cover to permit larger capacities.

All Stainless Steel Internal Components — Hardened valves and seats. Extra long life and dependable service. Resists water hammer. Protects against erosion and corrosion.

Balanced Pressure Thermostatic Element — allows venting of non-condensibles while operating at design pressure.

Rugged Welded Stainless Steel Element — Increases service life.

Wide Selection of Differential Pressures — Sizes 3/4” to 2” available with 15, 30, 75 and 125 psig differential pressures.

Air Line Water Removal — Special configuration FTNA optimized for compressed air service.

Repairable In-line — Can be serviced without disturbing system piping.

MODELS
● FTN-15—Steam pressures to 15 PSIG
● FTN-30—Steam pressures to 30 PSIG
● FTN-75—Steam pressures to 75 PSIG
● FTN-125—Steam pressures to 125 PSIG
● FTNA-75—Air pressures to 75 PSIG
● FTNA-125—Air pressures to 125 PSIG

APPLICATIONS
● Unit Heaters & other Space Heating Equipment
● Heat Exchangers/Reboilers
● Steam Heating Coils
● Steam Main Drips
● Air Compressor Receivers
● Air Line Drips
● Air Powered Process Equipment

OPTIONS See page 329
● Repair Kits

OPERATION
Air entering trap is immediately discharged through the high capacity integral air vent. The thermostatic vent will close just prior to saturation temperature. The balanced design will allow venting of non-condensibles that collect in the float chamber when operating at design pressure. When steam enters the trap, the thermostatic air vent closes to prevent steam loss.

When steam gives up its latent heat, it becomes condensate. This “condensate” enters the trap and causes the stainless steel ball float to rise. Raising of the float opens the discharge valve, allowing condensate to be continuously discharged as it enters the trap. The condensate level in the trap body is maintained above the discharge seat, providing a positive seal against the loss of steam.
FTN SERIES
FLOAT & THERMOSTATIC STEAM TRAPS

SPECIFICATION
Steam trap shall be of float and thermostatic design. Float shall actuate the valve via a hinged lever and linkage. Air vent shall be of balanced pressure design with stainless steel welded encapsulated bellows capable of discharging air and noncondensable gases continuously within 15°F of saturated temperature. Traps through 1 1/4” shall employ “H” pattern connections to accommodate multiple piping configurations. Trap shall be cast iron bodied suitable for pressures to 125 psi and available in 3/4” through 2” NPT.

MAXIMUM OPERATING CONDITIONS
PMO: Max. Operating Pressure

<table>
<thead>
<tr>
<th>ORIFICE</th>
<th>PMO</th>
<th>(lbs)</th>
<th>(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15 psig</td>
<td>(1.03)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30 psig</td>
<td>(2.07)</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>75 psig</td>
<td>(5.17)</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>125 psig</td>
<td>(8.62)</td>
<td></td>
</tr>
</tbody>
</table>

PMA: Max. Allowable Pressure
250 psig (17.2 barg)

TMA: Max. Allowable Temperature
450°F (232°C)

MATERIALS OF CONSTRUCTION
Body & Cover Cast Iron ASTM A126B
All Internal Stainless Steel
Air Vent (FTN only) . . . Balanced Pressure, Welded Stainless Steel

Maximum Capacity—lbs/hr (10°F Below Saturation)

For Kg/Hr Multiply by .454
†For FTNA capacities, multiply by 1.33.

Dimensions

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E1</th>
<th>lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTN-15</td>
<td>3/4"</td>
<td>.218</td>
<td>.279</td>
<td>369</td>
<td>489</td>
<td>650</td>
<td>785</td>
<td>1000</td>
</tr>
<tr>
<td>FTN-30</td>
<td>3/4"</td>
<td>.218</td>
<td>.279</td>
<td>369</td>
<td>489</td>
<td>650</td>
<td>785</td>
<td>1000</td>
</tr>
<tr>
<td>FTN-75</td>
<td>1 1/4"</td>
<td>.312</td>
<td>.600</td>
<td>770</td>
<td>980</td>
<td>1240</td>
<td>1640</td>
<td>2000</td>
</tr>
<tr>
<td>FTN-125</td>
<td>1 1/4"</td>
<td>.500</td>
<td>1100</td>
<td>1700</td>
<td>2400</td>
<td>3300</td>
<td>5000</td>
<td>6600</td>
</tr>
<tr>
<td>FTN-15</td>
<td>1 1/2"</td>
<td>.246</td>
<td>400</td>
<td>520</td>
<td>680</td>
<td>890</td>
<td>1300</td>
<td>2300</td>
</tr>
<tr>
<td>FTN-30</td>
<td>1 1/2"</td>
<td>.246</td>
<td>400</td>
<td>520</td>
<td>680</td>
<td>890</td>
<td>1300</td>
<td>2300</td>
</tr>
<tr>
<td>FTN-75</td>
<td>2"</td>
<td>.332</td>
<td>550</td>
<td>675</td>
<td>880</td>
<td>1225</td>
<td>1950</td>
<td>3000</td>
</tr>
<tr>
<td>FTN-125</td>
<td>2"</td>
<td>.332</td>
<td>550</td>
<td>675</td>
<td>880</td>
<td>1225</td>
<td>1950</td>
<td>3000</td>
</tr>
</tbody>
</table>

For Kg/Hr Multiply by .454
†For FTNA capacities, multiply by 1.33.